
A Review of Statistical Methods
for Quality Improvement and

Control in Nanotechnology

JYE-CHYI LU

Georgia Institute of Technology, Atlanta, GA 30332-0205, USA

SHUEN-LIN JENG

National Cheng Kung University, Tainan 701, Taiwan

KAIBO WANG

Tsinghua University, Beijing 100084, P. R. China

Nanotechnology has received a considerable amount of attention from various fields and has become

a multidisciplinary subject, where several research ventures have taken place in recent years. This field is

expected to affect every sector of our economy and daily life in the near future. Besides advances in physics,

chemistry, biology, and other science-based technologies, the use of statistical methods has also helped the

rapid development of nanotechnology in terms of data collection, treatment-effect estimation, hypothesis

testing, and quality control. This paper reviews some instances where statistical methods have been used

in nanoscale applications. Topics include experimental design, uncertainty modeling, process optimization

and monitoring, and areas for future research efforts.
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“
N

ANOTECHNOLOGY is the understanding and con-
trol of matter at dimensions of roughly 1 to

100 nanometers (nms, [a nanometer equals 10−9 me-
ters]), where unique phenomena enable novel appli-
cations. Encompassing nanoscale science, engineer-
ing, and technology, nanotechnology involves imag-
ing, measuring, modeling, and manipulating matter
at this length scale. At the nanoscale, the physical,
chemical, and biological properties of materials differ
in fundamental and valuable ways from the proper-
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ties of individual atoms and molecules or bulk mat-
ter. Nanotechnology R&D is directed toward under-
standing and creating improved materials, devices,
and systems that exploit these new properties.” (Na-
tional Nanotechnology Initiative (2008)).

In the near future, it is expected that nanotechnol-
ogy will impact every sector of our economy and daily
life. Roco (2004) characterized the development of
nanotechnology into four generations, each with dif-
ferent featured products. The first generation, start-
ing from about 2001, is characterized by passive
nanostructures; the major focus of this generation
is on nanostructured materials and tools for mea-
surement and control of nanoscale processes. Popular
examples include nanoparticle synthesis and process-
ing, nanocoating, various catalysis, etc. The second
generation is characterized by active nanostructures,
according to Roco (2004). The research focus moves
from nanostructured materials to novel devices and
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FIGURE 1. Four Generations of Nanotechnology Appli-

cations.

device system architectures. Popular research topics
include nanobiosensors and nanodevices, nanoscale
tools, nanoscale instrumentation, and nanomanufac-
turing. Modeling and simulation of nanoprocesses are
also important topics in this generation. The third
generation, featuring 3-D nanosystems and systems
of nanosystems, is expected to shift toward hetero-
geneous nanostructures and supermolecular system
engineering. As an example, research on nanoscale
electromechanical systems will be greatly promoted
in this stage. Roco (2004) selected heterogeneous
molecular nanosystems as the feature products of the
fourth generation.

Figure 1 presents the overlapping generations of
nanotechnology products and their respective man-
ufacturing methods and research focus identified by
the International Risk Governance Council (IRGC)
(see Roco (2004) for details). We will use this sum-
mary to lead the discussion of where statistical meth-
ods can contribute (or have contributed) in nanotech-
nology development in the remainder of this paper.

Various government agencies, private corpora-
tions, and venture capitalists have created programs
to support R&D in nanotechnology. According to
Lux Research, the R&D investments in nanotech-
nology worldwide amounted to $12.4 billion in 2006.
The United States Department of Energy started a
nanotechnology program to develop new materials
for improving fuel efficiency and providing efficient
lighting. Likewise, the Department of Defense has
laid out a research plan to develop new approaches
and processes for manufacturing novel, reliable, lower
cost, higher performance, and more flexible elec-

tronic, magnetic, optical, and mechanical devices.
Even the research topics from the National Institutes
of Health include new nanomaterials for interfacing
with living tissues and molecular and cellular sensing
for gathering diagnostic data inside human bodies
where traditional instruments cannot reach.

Many challenges confronting nanotechnology re-
search call for solutions from a multidisciplinary ap-
proach. Because statistical techniques have made siz-
able impacts in many technology fields in the past,
statistics are expected to play an important role in
tackling these challenges and boosting the develop-
ment of nanotechnology. The purpose of this paper
is to present examples of applications of statistical
methods in nanotechnology research and to iden-
tify possible new statistical approaches for solving
emerging problems in nanotechnology. Specifically,
we highlight the following challenges that provide op-
portunities for statistical applications:

First, statistical procedures help us learn more
about the formation processes of nanocomposites. Re-
cently, researchers have reported new progress in de-
veloping nanocomposites. Forming processes dictate
properties of nanocomposites. These processes usu-
ally involve complex chemical and mechanical reac-
tions, where even minor changes of environmental
factors or process settings may result in unexpected
outcomes. Because the theory of the nanocomposite-
forming process has not matured yet, many develop-
ments rely on experimental studies. Due to the high
costs associated with experimental runs and sam-
ple measurements and the complex relationship be-
tween process outcomes and controllable/noise fac-
tors, new statistical experimental design methods are
needed. Section 2 reviews recent work on applying
experimental designs in nanocomposites applications
and categorizes them based on the types of designs
adopted in each study.

Second, statistical modeling helps deal with spe-
cial data types and processes. Data collected from
processes for developing nanoscale materials some-
times exhibit forms that are different from the usual
patterns seen in conventional manufacturing situa-
tions. Such characteristics may include experimen-
tal spaces with many isolated regions of low or zero
yields and high-frequency signals shown in spatial do-
mains. Therefore, extensions of commonly used sta-
tistical techniques are required to draw useful infor-
mation from such types of data. Beyond these exten-
sions, stochastic modeling of the forming processes
for characterizing multilevel or multiscale uncertain-
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ties is another valuable topic. Section 3 summarizes
recent work on data collection, statistical analysis,
and uncertainty modeling in nano research and pro-
vides examples for researchers that are facing similar
problems.

Third, statistics help improve low-quality and
high-defect processes. Because nanosyntheses and
nanofabrications are not well controlled thus far,
defect rates of nanocomposites remain rather high.
Mass and high-yield production is the key step
confronting nanomanufacturing research. Statistical
quality control and productivity improvement tech-
niques, which proved to be tremendously helpful in
traditional manufacturing, are needed in nanomanu-
facturing to enhance product quality and improve
production efficiency. Extension of the traditional
quality monitoring and improvement tools to accom-
modate the potential flood of sensor information is
an interesting statistics research topic. Section 4 re-
views the use of statistical process control (SPC)
and automatic process control (APC) techniques in
nanoapplications. The feedback control section pro-
vides examples of using stochastic partial differential
equations (SPDEs) to describe thin-film deposition
processes. Based on these SPDEs and results in ki-
netic Monte-Carlo simulations, multiscale automatic
process controllers (APCs) are developed.

Last, statistics help improve low and unpredictable
product reliability. Reliability models for nanocom-
posites are not well developed. However, through in-
vestigation of nanomaterials interfacing with envi-
ronmental and stress factors, the reliability charac-
teristics of nanodevices can be better understood and
predicted. Jeng et al. (2007) provide a comprehensive
review on recent reliability studies in nanoapplica-

tions. To keep this article brief, reliability issues will
not be discussed in this review.

The remainder of this paper is organized as fol-
lows. Section 2 reviews successful applications of de-
sign of experiments (DOEs) techniques in nanotech-
nology research, which covers regular, nonregular,
and robust parameter designs. Section 3 reviews var-
ious data collection, statistical analysis, and mod-
eling methods in the literature. Specifically, works
on probability distribution and variation modeling
of nanostructure characteristics, treatment of high-
frequency signal and spatial data as well as stochastic
modeling techniques are presented. Section 4 reviews
recent development of SPC and quality-control tech-
niques. Examples of process monitoring and feedback
control, especially multiscale modeling and control
techniques, are illustrated in this section. Section 5
concludes this review with suggestions for future re-
search on quality improvement and control in nan-
otechnology.

Design of Experiments

Due to the applications in nanoelectronics, pho-
tonics, data storage, and sensing, synthesizing nanos-
tructures is a research topic of foremost importance
in nanotechnology (Dasgupta et al. (2008)). How-
ever, the synthesis process is extremely sensitive to
control settings and environmental noises. For ex-
ample, to generate the nanostructures of nanosaws,
nanowires, and nanobelts shown in Figure 2, Das-
gupta et al. (2008) shows that the control factors,
such as temperature and pressure, have a heavy im-
pact on the final output of a synthesis process. More-
over, situations occur in which multiple responses
are studied with functional relationships containing

FIGURE 2. Nanosaws, Nanowires, and Nanobelts (from Dasgupta et al. (2008)).
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many potential factors of interest. In order to ro-
bustly optimize several properties of nanoproducts,
the impact of each factor, plus their interactions, on
process outputs should be studied using advanced
statistical techniques. In the literature, DOE has
been employed as the major tool for exploring the
relationship between controllable/noise factors and
process responses. Regular designs, including full fac-
torial and fractional factorial designs, response sur-
face methodologies, and nonregular designs (e.g., D-
optimal designs) have been successfully utilized to
optimize synthesis processes and investigate material
properties. This section reviews the use of DOE tech-
niques and robust parameter designs in nanotechnol-
ogy and gives examples of how these techniques can
be utilized in the nanomanufacturing processes. This
review covers studies in the following journals: AAPS
PharmSciTech; Carbon; Chemical Engineering Jour-
nal, Colloids and Surfaces A: Physicochemical En-
gineering Aspects; International Journal of Pharma-
ceutics; Journal of Physical Chemistry B; Journal of
the American Statistical Association; Materials and
Design; Microelectronics Reliability; Nanotechnology;
and Powder Technology.

Regular Designs

Basumallick et al. (2003) investigated the synthe-
sis processes for Ni–SiO2 and Co–SiO2 nanocompos-
ites, of which the physical properties are very sen-
sitive to process parameters. This attribute makes
the response surface very rugged. Because process-
ing conditions have significant impact on the proper-
ties of nanocomposites, the authors considered three
factors with three levels each in their experimenta-
tion. Instead of using a conventional three-level frac-
tional factorial design, the authors designed eight
runs using a two-level full factorial design and added
three runs setting all factors at the middle level. Us-
ing regression equations fitted by the 11-run exper-
iment outcomes, the fractional conversion values of
the nanocomposites were modeled as a function of
heating rate, composite concentration, and the start-
ing temperature of the reaction. Becaise the response
surface is very rugged, in order to improve the data
collection and analysis methods used in this paper,
we recommend the experimental designs (and their
extensions) commonly used in computer experiments
(e.g., Dasgupta et al. (2008)) for efficiently collecting
costly data. Moreover, robust process-optimization
ideas (e.g., Taguchi (1986)) could be used so that
the physical properties of the nanocomposites are less
sensitive to the noise factors.

Lin et al. (2003) studied the surface and grain
structure of silver-plated film on a copper lead frame.
The surface roughness was measured by atomic force
microscopy (AFM), while the surface thickness was
obtained by nanoindentation measurement using a
UMIS-2000 nanoindenter. Additionally, the grain
structure was measured by a transmission electron
microscope (TEM). The impact of the silver-plated
film-surface characteristics and grain structures to
the quality of wedge bonding between gold wire and
silver-plated lead frame were investigated through
a 24 factorial design. Four design parameters were
bond time, bond force, electrical current, and the two
lead frame types. The experimental results showed
that the surface characteristics and grain structures
have a great impact on the quality of bonding.

To systematically obtain a model of factors lead-
ing to an optimum response, many researchers use
the response surface methodology (RSM) for data
collection and process optimization. RSM should also
be considered when complex models are needed for
characterizing a nanosynthesis or nanomanufactur-
ing process. Prakobvaitayakit and Nimmannit (2003)
presented a process to prepare polylactic-co-glycolic
acid (PLGA) nanoparticles by interfacial deposition
following the solvent-displacement technique. They
investigated the process through a 23 factorial de-
sign experiment. Multiple responses—particle size,
amount of encapsulated material, and encapsulation
efficiency—were considered in the experiments. To
optimize multiple responses, the authors used a si-
multaneous optimization technique with a desirabil-
ity function. The desirability function converts each
response into an individual function that varies over
the range [0, 1] and takes the value one when the re-
sponse is at its target value and less than one if not
(see page 425 in Montgomery (2005) for details). By
defining the overall desirability as the product of all
individual functions, optimizing multiple responses
is achieved by maximizing the overall desirability.
With this method, the experimental design helped
choose the optimal formulation ingredients for the
nanoparticles. Now, the composites formed by PLGA
nanoparticles are being commercially used for drug-
delivery systems.

Barglik-Chory et al. (2004) used a second-order
response surface to study the main effects and in-
teractions of three controllable factors in synthesiz-
ing a type of semiconductor nanoparticles, colloidal
CdS. The quantum effects in nanoparticles provided
discrete energy levels, and the semiconductor band
gap exhibited strong size dependence. Through con-
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trolled experiments, the influence of environmental
factors on nanoparticles could be investigated and
quantified, potentially leading to an improvement in
the nanofabrication efficiency.

After identifying the significant parameters by
using Taguchi’s parameter design method (Taguchi
(1986)), Hou et al. (2007) used RSM to build a rela-
tionship between five process parameters and average
grain size of nanoparticles. They found that the rela-
tionship between process parameters and grain size
can be modeled with a second-order equation. Using
the integrated genetic algorithm and RSM approach,
the optimal settings of these five parameters in the
nanoparticle milling process were determined.

Yördem et al. (2008) used RSM to investigate
effects of material choices and process parame-
ters on the diameter of electrospun polyacrylonitrile
nanofibers. Three explanatory factors—voltage, solu-
tion concentration, and collector distance—and two
response variables—fiber diameter and coefficient of
variation—were studied. At each level of the collector
distance, the other two factors were varied and the
resultant fiber diameter was recorded. For the pur-
pose of predicting fiber diameter and coefficient of
variation, polynomial regression models were fitted
to the experimental data at each level of the collec-
tor distance. Interactions among the factors were also
identified. The authors suggested a narrower window
of factor space for future nanofiber production.

Nazzal et al. (2002) used a three-level Box–
Behnken design to evaluate the effect of formula-
tion ingredients on the release rate of ubiquinone
from its adsorbing solid compact and to obtain an
optimized self-nanoemulsified tablet formulation. To
study the effects of three independent variables on
six responses, 15 runs of experiments were con-
ducted. The formulation ingredients—copolyvidone,
maltodextrin, and microcrystalline cellulose—were
shown to have a significant effect on the emulsion
release rate. However, this article did not show how
to allocate these ingredients to optimize the multiple
objectives.

Using a radio-frequency plasma reactor, Cota-
Sanchez et al. (2005) used a 24 factorial design
to study fullerenes synthesis. The response variable
was C60 yield and the four operating parameters
were reactor pressure, raw-material feed rate, car-
bon black–catalyst ratio, and generator-plate power.
Using ultraviolet spectrometric analysis to measure

yield, they found that the significant factors that
affect the C60 synthesis are the reactor pressure,
plate power, and feed rate. Under the optimal op-
erating condition, the yields were synthesized up to
about 7.7 wt.%; moreover, nanotubes were success-
fully produced. Further optimization of other param-
eters, such as the particle injection and quenching
conditions, through the use of RSM might lead to
enhanced yields of these carbon nanostructures.

In order to study the flexural properties and dis-
persions of a ceramic material, SiC, Yong and Hahn
(2005) employed a two-level full-factorial design to
investigate interactions between coupling agent and
dispersant. A central composite design was used
to determine the optimal dosages of chosen fac-
tors to achieve the maximum flexural strength and
maximum particle dispersion. Experimental results
showed that two objectives could be optimized si-
multaneously at the same factor levels. When an op-
timal dosage is employed, the nanoparticle reinforce-
ment can enhance the mechanical properties of the
composites.

Compared with factorial designs, split-plot de-
signs are suitable for situations in which physical
restrictions on a process exist and certain combina-
tions of factor levels are difficult to reach. Nembhard
et al. (2006) presented a split-plot design for inves-
tigating nanoscale milling of submicron channels on
a gold layer. Similar to a synthesis process that in-
volves complex chemical and mechanical reactions,
such a milling process was sensitive to various con-
trollable and noise factors. By treating the experi-
ment as a two-stage process, whole-plot and subplot
factors were identified. Results showed that split-plot
experiments in nanomanufacturing reduce labor and
costs and were often effective at detecting the effects
of subplot factors.

In order to achieve high yield and reproducibility
of a synthesis process, Dasgupta et al. (2008) con-
ducted a full-factorial experiment. Two parameters,
temperature and pressure, with five and nine levels,
respectively, were varied during the experiment and
three response variables, the numbers of nanosaws,
nanowires, and nanobelts, were recorded. Because
the total number of the nanostructures was a con-
stant, the authors proposed simultaneously modeling
the probability of generating different nanostructures
using a multinomial generalized linear model (GLM).
The optimal settings obtained from this research led
to a significant improvement in the process yield.
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Nonregular Designs

When a regular factorial design is not feasible
due to possible limitations in experimental run-
size and factor-level selections, some nonregular de-
signs may be considered for nano process modeling
and optimization. Among others, successful applica-
tions of D-optimal designs in nanotechnology have
been demonstrated by several researchers. Compared
with the regular designs, D-optimal designs may use
nonorthogonal design matrices to reduce experimen-
tal runs and minimize the variances of coefficients
associated with a specific model setting.

Fasulo et al. (2004) studied the extrusion pro-
cessing of thermoplastic olefin (TPO) nanocompos-
ites. Properties of TPO composites are influenced
by the forming process. The authors chose different
combinations of processing factors, including melt
temperature, feed rate, and extruder screw-rotation
speed, and investigated both surface appearance and
physical/mechanical properties of the nanocompos-
ites. A D-optimal design was adopted in the research
to characterize the relationship between the quality
measures and explanatory factors. Useful suggestions
for optimizing process output were obtained.

Dasgupta (2007) developed a sequential minimum
energy design (SMED) to deal with complex response
surface with multiple optima for the yield of nanoma-
terial synthesis by using fewer design points. Figure
3 illustrates the response surface of the yield and the
selected design points. Compared with traditional
designs, the SMED design can probe high-yield re-
gions and avoid nonyield points more effectively.

Robust Parameter Design

One major challenge confronting nanosynthe-
sis/manufacturing processes is the high variation in
experimental results. Most synthesis processes are
very sensitive to environmental or noise factors.
Therefore, robust parameter design (e.g., Taguchi
(1986)) has been considered by several researchers
to reduce experimental variation and enhance pro-
cess yield and production efficiency. Figure 4 illus-
trates one of the key ideas of the robust parameter
design. The level setting of control factors will be
different by including the noise factors in the exper-
iment when there are interactions between control
and noise factors.

Nanoparticles have been widely utilized in many
industrial applications, such as carbon nanotube,
nanoceramics, and nanocompound materials. The

wet-type milling machine is a recently developed tool
to produce nanoparticles and to avoid aggregation
effect. Because of its simplicity and applicability to
all classes of materials, this machine is becoming
popular. Hou et al. (2007) applied the robust pa-
rameter design method to optimize a nanoparticle
milling process. They considered the following five
process factors, each with three levels, to improve
the nanoparticle milling process: the milling time,
flow velocity of circulation systems, rotation velocity
of agitator shaft, solute-to-solvent weight ratio, and
filling ratio of grinding media. The response variable
was the nanoparticle grain size, which is measured
by the Coulter multisizer equipment. To save experi-
mental cost, the L27 orthogonal array was used. The
experimental results showed that all five process fac-
tors significantly affect the grain size.

Kim et al. (2004) implemented the robust design
method with an L9 orthogonal array to optimize the
recipe for preparing nanosize silver particles. The sil-
ver nanoparticles have been widely used in chemical
and medical industry due to their unique properties
of conductivity and resistance to oxidation. The ob-
jective was to determine the experimental conditions
where the size of nanoparticle is small and has less
variability. The following three factors were consid-
ered in the experiment: molar concentration ratio,
dispersant concentration, and feed rate. The response
variables are the average size and the size distribu-
tion of silver nanoparticles. The concentration of dis-
persant was identified as the most influencing factor
on the average particle size and the size distribution.
Using the derived optimal conditions, silver nanopar-
ticles can now be prepared with small size variance
using the derived optimal condition.

In another paper about the synthesis of nanopar-
ticles, Kim et al. (2005) used Taguchi’s method to
optimize a new microemulsion method for prepar-
ing TiO2 nanoparticles. An L8 orthogonal array was
used as the design of experiment for the five factors:
H2O surfactant value, H2O/TEOT value, ammonia
concentration, feed rate, and reaction temperature.
The derived optimal condition led to the least size
variability in nanoparticles.

Data Collection, Statistical Analysis,
and Physical–Chemical–Statistical

Modeling

Because measurements with complicated data
patterns are frequently seen in experiments in nan-
otechnology, the collection, analysis, and modeling
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FIGURE 3. Response Surface of the Yield of a Nanostructure and the Selected Design Points (from Dasgupta (2007)).

of data in nanoengineering are vital topics. This sec-
tion focuses on high-frequency and/or spatial data
signals seen in nanotechnology studies. In addition,
probability and stochastic models of nanoscale mea-
surements and process variations are reviewed. The
primary journals reviewed here include: Combus-
tion Theory and Modeling, IEEE Transactions on
Nanotechnology, IEEE Transactions on Reliability,
IEEE Transactions on Semiconductor Manufactur-
ing, IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, IEICE Transactions on Elec-
tronics, International Journal of Engineering Sci-
ence, International Journal of Plasticity, Journal of
the Mechanics and Physics of Solids, Physical Re-
view Letters, Solid-State Electronics, and Surface &
Coatings Technology.

Sampling Plans

Effective sampling plans are critical to model the
nanofabrication processes using fewer data. The fol-
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FIGURE 4. One of the Key Ideas of the Robust Parameter

Design.

lowing sampling techniques can be used to select rep-
resentative data for analysis: simple random sam-
pling, stratified sampling, cluster sampling, system-
atic sampling, importance sampling, and their hy-
brids. However, new sampling techniques have been
developed for the nanofabrication process.

Zhao et al. (2004) developed a new double sam-
pling technique to test interconnects and buses in
very large scale integration (VLSI) circuits. Due to
the rapid size scaling and high-speed operation of in-
tegrated circuits (ICs) using nanometer technologies,
electromagnetic noise sources and their effects on in-
terconnects have become extremely significant. The
basic idea for this sampling technique was to sam-
ple test data for loading into two flip-flops at a fixed
time interval and check whether the resultant data
streams were consistent with each other. Thus, in-
consistent and noisy signals with spikes could be cap-
tured. This technique was capable of detecting errors
caused by electromagnetic noise effects in nanofabri-
cation.

Chang et al. (2005) proposed a new method to
detect the read failure in a static random access
memory (SRAM) cell using a critical-point sampling
technique. The idea was similar to the importance
sampling. In sub–100-nm technologies, the analytical
model previously used fails to accurately match real-
istic simulation results due to various short channel
effects and different leakage components. It is prefer-
able to employ a full-scale transient Monte Carlo
(MC) simulation; however, using the MC method
usually takes a large number of iterative runs to ob-
tain an accurate read failure probability. Thus, rather
than deriving the entire voltage-transfer characteris-

FIGURE 5. Idea Illustration of Importance Sampling.

tic curve, the authors measured the SRAM cell sta-
bility at certain representative points on the curve
for a specified voltage value. The experimental result
showed that their model achieves high accuracy and
was 20 times faster in computational speed.

Proper use of importance sampling will provide
a more accurate inference or save the sampling cost
with smaller sample size. This is a very helpful sta-
tistical technique for collecting expensive samples in
many nanofabrication processes. Figure 5 illustrates
the general idea. Suppose the target of the inference
is the mean of a statistic m(X), i.e. E(m(X)), where
m(x) only depends on the sample values x greater
than a constant c. Then a proper choice of a new
density h(x) of X will make the sample mean of
m(X)f(X)/h(X) an unbiased estimator of the tar-
get with smaller variance. The main character of the
new density h(x) is to produce more samples on the
area (greater than c) that affects the values of m(x).
See page 87 in Davison (2003) for more details of
importance sampling.

Probability Distribution and Variation
Modeling

As technology shrinks to the nanoscale region,
probability distributions for material and structure
performance may change to different forms. More-
over, variability in device performance becomes a
major issue in the circuit-design stage. The following
paragraphs review several papers studying probabil-
ity distributions of nanoparticle measurements and
process variations in IC manufacturing.

In ordnance technologies, the reproducibility of a
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thermite’s burning behavior is critical for both safety
and performance evaluation. As a particle’s diameter
approaches the nanoscale, the burn-rate calculation
becomes increasingly sensitive to variations in the
particle diameter. In the study by Granier and Pan-
toya (2004), the burn-rate estimates for nanoscale
thermites were statistically evaluated with a proba-
bility density function (pdf) of the particle-size dis-
tribution and a diameter-dependent burn-rate equa-
tion. Based on a series of scanning electron mi-
croscopy (SEM) images, a model of mass fractal ag-
gregates was used to interpret the scattering data.
A volume-weighted particle-size distribution was ob-
tained. Both single mode and bimodal particle-size
distributions were studied using Gaussian and a
mixture of Gaussian distributions, respectively. The
analysis showed that, as the particle size reduced to
the nanoscale, the size distribution, rather than the
average particle size alone, became increasingly im-
portant. Large variability in the burn rate was as-
sociated with a large standard deviation in particle
sizes.

Bazant and Pang (2007) studied the pdf of
strength of nanostructures based on a nanoscale
atomic lattice. To predict a failure event with an ex-
tremely low probability, the cumulative distribution
function (cdf) of strength of quasi-brittle structures
was modeled as a chain of representative volume el-
ements (RVE). Each of the RVEs was statistically
characterized by a hierarchical model consisting of
bundles (via a parallel coupling) of two long sub-
chains. Each of the subchains consisted of subbundles
of two or three long sub-subchains of sub-subbundles
and so on. Eventually, the nanoscale atomic lattice
was reached. They gave physical reasons that the
failure of interatomic bonds follows a thermally ac-
tivated process governed by stress-dependent activa-
tion energy barriers. The tail of the cdf of the RVE
strength followed a power-law model. Finally, they
concluded that the distribution of strength of the
quasi-brittle nanostructure is a Weibull.

The physical process of surface formation in
nanocomposites has several stochastic components.
Chen et al. (2005) studied barrier effects impacting
surface formation using oxidized porous silicon. Ac-
cording to their experimental results, a Gaussian dis-
tribution fit the data of oxidized porous silicon sam-
ples well. The barrier height turned out to have a
Gaussion distribution, and the photon energy was
shown to be a function of the barrier heights.

Hydrogenated amorphous silicon (a-Si:H), the

prototypical disordered semiconductor, is an impor-
tant material for use in nanoscale optoelectronic ap-
plications including sensors, flat-panel displays, 2D
medical imaging, and photovoltaics. Belich et al.
(2003) reported that the noise distribution in a-Si:H
was non-Gaussian in nature, a surprising feature in
macroscopic samples at and above room tempera-
ture. Traditionally, the noise arose from an ensemble
of statistically independent fluctuators. This led to
Gaussian-distributed noises. One possible explana-
tion of the non-Gaussian noises was due to (nonlin-
ear) interactions between fluctuators.

The stored charge in each logical node of a VLSI
circuit decreases with decreased dimensions and de-
creased voltages in nanotechnology. Weak radiation
can cause disturbance in the circuit signals, lead-
ing to increased soft-error failures. The fault/error-
detection probability can serve as a measure of
soft-error failure, which is an increased threat in
the nanodomain logic node. In order to model the
fault/error-detection probability, Rejimon and Bah-
nja (2005) presented a Bayesian network for error-
sensitivity analysis in VLSI circuits. Their procedure
provided a framework to obtain the joint pdfs of all
variables in the network for calculating the error-
detection probability.

As the technology node goes down to 90 nm and
below, variability in device performance becomes a
crucial problem in the design of ICs. In the past,
die-to-die variability, which was well managed by the
worst-case design technique, dominated the within-
die variability. Onodera (2006) pointed out that the
statistical nature of the variability has been changed
such that the within-die variability is growing. This
characteristic presents a challenge in circuit-design
methodology. His paper provided measurable results
of variability in 0.35-, 0.18-, and 0.13-μm processes
and explained the trend of variability. It also showed
that a circuit that was designed optimally under
the assumption of deterministic delay is now most
susceptible to random fluctuation. This result indi-
cates the need of applying statistical thinking in the
circuit-design methodology.

For solving process-variation problems in nano-
scale-IC manufacturing, Li et al. (2005) pro-
posed a novel projection-based extraction approach,
PROBE, to efficiently create quadratic response sur-
face models and capture both interdie and intradie
variations with affordable computation cost. Instead
of fitting a full-rank quadratic model, PROBE ap-
plied a projection operator and found an optimal
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low-rank model by minimizing approximation er-
rors, which were defined by the Frobenius norm. In
PROBE, the modeling accuracy and parsimony can
be tuned by increasing or decreasing the dimension
of the projection space. Several examples from digi-
tal and analog circuit-modeling applications demon-
strated that PROBE can generate accurate response
surface models while achieving up to 12 times faster
speed as compared with traditional process-variation
simulation and modeling methods.

Stochastic Modeling

Due to the fact that a large proportion of vari-
ability in nano synthesis/growth processes are not
well explained by known physical models, stochastic
modeling techniques have served as an effective way
in characterizing such processes.

Miranda and Jimenez (2004) proposed a stochas-
tic logistic model based on a Wiener process for char-
acterizing the breakdown dynamics of ultrathin gate

oxides (at 2-nm level) and for understanding the ef-
fect of voltage stress on the leakage current. The
model had two components: a deterministic term
with a logistic function describing the mean failure
behavior and a random term with a Wiener process
representing uncertainties and noises. Throughout
the model, the nano-material–degradation dynamics
were captured using a small set of parameters.

To characterize degradation of leakage currents of
3-nm gate oxides, Hsieh and Jeng (2007) considered a
nonhomogeneous Weibull compound Poisson model
with accelerated stresses. The oxides were in square
metal-oxide semiconductor (MOS) capacitors grown
on p-Si. One hundred twenty capacitors were irra-
diated at three levels of ion density, and the leak-
age current versus gate voltage was measured before
and after each irradiation step. Figure 6 shows the
sketch of the leakage current of the gate oxides at
three ion levels and two accelerated voltages. They
provided maximum-likelihood estimates of model pa-
rameters and derived the breakdown-time distribu-

FIGURE 6. Leakage Currents of 3-nm Gate Oxides Under Accelerated Stresses (Voltages; from Hsieh and Jeng (2007)).
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tion. To check the proposed models for the degra-
dation measurements and the rate of breakdown-
event occurrence, goodness-of-fit tests were consid-
ered. The estimated nanodevice reliabilities were cal-
culated at lower stress conditions.

Time series of nanosystem measurements exhibit
intermittency. At random times, the system switches
from state on (or up) to state off (or down) and vice
versa. Margolin and Barkai (2005) investigated the
nonergodic properties of blinking nanocrystals mod-
eled by a Levy-walk stochastic process. The process
was characterized based on the sequence of on and
off sojourn times. The times of the on–off events were
mutually independent and were drawn at random
from a pdf that followed a power-law distribution
generated by a fractional Poisson process.

It has been widely recognized that novel nanoelec-
tronic devices, such as carbon nanotubes and molec-
ular switches, have high manufacturing defects due
to the stochastic nature of the bottom-up physical
and chemical self-assembly processes. Qi et al. (2005)
reported that it was very challenging to manufac-
ture nanocomputers with a device density of 1012

chips due to faulty components pervasive in the de-
vice. The authors studied the behavior of a NAND-
multiplexing system with a Markov chain of distribu-
tions that could be unimodal or bimodal, depending
on whether the probability of NAND gates was larger
or smaller than a threshold value.

High-Frequency Signal and Spatial Data
Analysis

Due to the use of advanced data-collection equip-
ment, spatial data and/or high-frequency signals are
collected in many nano applications. Because such
data signals contain rich information about process
status or product quality, effective (and efficient)
statistical analysis methods are greatly important
for extracting knowledge. The following paragraphs
present a few examples.

Spatial statistical models have been used in mod-
eling nanoscale structures. Chen and Lee (2004) used
lattice points to represent atomic bonding units in
a crystal. The structure of the unit together with
the network of lattice points determined the crystal
structure and the physical properties of the nano-
material. In their experiments, polycrystalline solids
consist of randomly distributed grains and grain
boundaries. The size of grains was usually in the
nano/microscale. Each grain was modeled as crystal-
lized solid by micromorphic theory, while the grain

boundaries were modeled by classical continuum the-
ory. Within each grain, the atomic motion led to the
continuum lattice deformation from nanoscale to mi-
croscale. A multiscale spatial model was then used to
characterize the material behavior of polycrystalline
solids.

In order to understand the macroscopic prop-
erties of heterogeneous materials, modeling spatial
correlations for microstructures is needed. Jefferson
et al. (2005) analyzed microstructures of polymer
nanocomposites and discovered that the material
measurements did not exhibit randomness from a sin-
gle homogeneous distribution. The traditional empir-
ical model became inappropriate. A mixture of two
distributions that defined the transition probabilities
between two phases of the composites was introduced
as a tool to examine the randomness and periodicity
in the microstructure.

For manufacturing high-performance films with
a thickness of only a few nanometers, nondestruc-
tive testing methods are required to ensure pro-
duction quality. Schneider et al. (2002) developed
a laser-acoustic technique based on surface acous-
tic waves for testing nanometer film’s hard-coating
quality. A nitrogen-pulse laser was used to generate a
wide-band surface acoustic wave. When propagating
through the nanofilm surface, the wave signals were
recorded using a digitizing oscilloscope. Applying the
Fourier transformation to the high-frequency laser-
acoustic signals, the authors obtained empirical esti-
mates of thickness and hardness of the films. Because
the recent popular tool for modeling high-frequency
signals is wavelets, it might be interesting to see the
applicability of wavelets and the results they lead to
in analyzing laser-acoustic signals. See papers in the
subsection of process monitoring of functional data
for examples.

Statistical Process Control (SPC)
and Quality Control

As a traditionally popular technique in manufac-
turing, SPC is expected to serve the role of identify-
ing assignable causes and thus reducing variations in
nano-manufacturing processes. However, in this early
stage of research in nanotechnology, nano-production
systems have not matured yet. Hence, publications
on SPC application to nano-technology research are
scarce. This section highlights two important issues
appearing in nano technology: functional data moni-
toring and feedback control. Although most of the
feedback control studies deal with control-theory,
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i.e., they are not statistically oriented, this review
does dig out a few sensor-data–based control studies.
In addition, several multiscale modeling and control
publications illustrate the potential of future statis-
tics research in the important nanotechnology de-
velopment areas (see the description in the second
generation of Figure 1). This review covers the lat-
est progress on nano-SPC published in the follow-
ing journals: Computers & Chemical Engineering,
Control Engineering Practice, IEEE Transactions on
Plasma Science, IEEE Transactions on Semiconduc-
tor Manufacturing, Journal of Process Control, Jour-
nal of Quality Technology, Nanotechnology, Surface
& Coatings Technology, and Wear.

Process Monitoring of Functional Data

Functional data characterize quality or reliability
performance of many manufacturing processes. They
are very informative in process monitoring and con-
trolling for nanomachining, ultrathin semiconductor
fabrication, and several other manufacturing pro-
cesses seen in the literature. In particular, wavelet
analysis has been popular in modeling and monitor-
ing functional data.

Ganesan et al. (2003) combined online detection
with offline modeling strategies in the nanodevice
wafer-polishing process. Through wavelet-based mul-
tiresolution analysis methods, the delamination de-
fects were identified by analyzing the nonstationary
sensor signals based on acoustic emission and co-
efficient of friction. Jiang and Blunt (2004) intro-
duced a wavelet model to extract linear and curve-
like features from complicated nonstationary surface-
texture patterns in nanometer morphological struc-
tures. Through wavelet decompositions and recon-
structions, Das et al. (2005) removed noises from the
coefficient of friction signals in their chemical me-
chanical polishing of nanodevices and used a sequen-
tial probability ratio test to set up a control chart for
monitoring process conditions.

Feedback Control

Sensor-Data–Based Control

Due to the ultrasmall size of objects and very fine
manufacturing processes, using data collected from
various sensors for developing precise automatic con-
trol rules is critical in nanotechnology studies. For in-
stance, Ohshima (2003) pointed out that most tradi-
tional feedback controllers using existing sensors for
micro and larger systems were not effective for deal-
ing with nanomachines, where physical and chem-

ical phenomena occur in very short time windows.
The author considered in-situ feedback schemes to
control physical–chemical reactions in their material
processing courses. Klepper et al. (2005) developed
an in-situ feedback–control tool to improve the re-
producibility of a nanostructure deposition process.
In order to reduce variability in the coating pro-
cess, the investigators needed to find ways to measure
process variations. Experiments were set up to test
the assumption that plasma discharge was sensitive
to the surface-roughness variation. The experiments
resulted in the identification of the correlation be-
tween hydrogen atomic emission and formation of
metal-carbide coatings. Through the control of the
emission, variability in the nanostructure composi-
tion and the wear performance of the coating was
controlled by a closed-loop feedback algorithm.

Lin et al. (2003) studied precise positioning issues
in a nanoscale drive system. To guarantee the desired
precision, the authors used an integral type of con-
troller in the positioning. The study demonstrated
the possibility of achieving a very precise position-
ing at the resolution level of sensor measurements.
Lantz et al. (2005) introduced a novel micromachined
silicon-displacement sensor with displacement resolu-
tion of less than 1 nm for providing accurate position-
ing information. This new technique can detect the
displacement by measuring the difference between
the resistances of the two sensors.

Multiscale Modeling and Control

A few factors, such as the following, motivate the
current active research on control of multiscale pro-
cesses (see the preface of the special issue on control
of multiscale and distributed process systems in 2005,
volume 29, Computers and Chemical Engineering for
details).

(a) key technological needs in semiconductor man-
ufacturing, microtechnology, nano technology,
and biotechnology; and

(b) recent developments in actuator and sensor
technology that make control of material mi-
crostructures, spatial profiles, and product-size
distributions feasible and practical.

Using the thin-film growth process as an example,
Christofides and Armaou (2006) provided a review of
recently developed methods for controlling multiscale
processes. The typical thin-film growth process has
been widely used in microelectronic devices, nano-
materials, and nanocomposites (see, e.g., Ng et al.
(2003), Sneh et al. (2002), Mae and Honda (2000)).
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To achieve better control of multiscale processes, pro-
cess modeling and prediction by using physical, sta-
tistical, or simulation methods to characterize com-
plicated process outputs becomes a critical issue. The
following provide a few examples.

Precise control of film properties in nanoscale
semiconductor manufacturing requires models that
predict how the film state (in the microscopic scale) is
affected by changes in controllable parameters (in the
macroscopic scale). Lou and Christofides (2003) de-
veloped a multiscale model that involves coupled par-
tial differential equations (PDEs) for modeling the
gas phrase of the material deposition process. Sub-
sequently, the authors used a kinetic Monte-Carlo
(kMC) simulator to model the atom adsorption, des-
orption, and surface-migration processes for shaping
thin-film microstructures. There are strong interac-
tions between the macro- and microscale phenomena.
For example, the concentration of the precursor in
the inlet gas governs the rate of adsorption of atoms
on the surface, which, in turn, influences the sur-
face roughness. On the other hand, the density of the
atoms on the surface affects the rate of desorption of
atoms from surface to the gas phrase, which, in turn,
influences the gas concentration of the precursor.

Lou and Christofides (2003) constructed an effi-
cient estimator for the surface roughness at the time-
scale comparable to the real-time evolution of the
process using discrete on-line measurements. Then,
the estimated roughness was fed into a proportional-
integral (PI) controller. Application of the esti-
mator/controller to the multiscale process model
demonstrated successful regulation of the surface
roughness at the desired value.

In nanoscale semiconductor manufacturing, the
kMC simulation methods have been used for

1. predicting microscopic properties of thin films
(e.g., surface roughness);

2. studying the dynamics of complex material de-
position processes including multiple chemical
species with both short-range and long-range
interactions; and

3. performing predictive control design to control
final surface roughness.

kMC is not available in closed form, thus making
it difficult for use in system-level analysis and design
and implementation of model-based feedback-control
systems.

Instead of using the kMC approach in develop-

ing feedback-control schemes, for many deposition
and sputtering processes, a system of stochastic lin-
ear/nonlinear PDEs is derivable based on micro-
scopic rules corresponding to the so-called master
equation, which describes the stochastic nature of
the thin-film growth process (Van Kampen (1992)).
Lou and Christofides (2006) proposed using nonlin-
ear stochastic ordinary differential equations (ODEs)
(an approximation of the stochastic PDEs) for devel-
oping computationally efficient feedback controllers.
Their objective was to control the expected rough-
ness of the surface. The solution strategy is to control
the covariance of the thin-film growth states in the
nonlinear stochastic PDE system for various spatial
locations. Based on various simulation runs, it is clear
that the proposed nonlinear feedback-control method
can reduce the surface roughness to the desired level,
while also effectively reducing the variance of the fi-
nal surface roughness.

Different control strategies have been used to con-
trol multiscale processes. Both proportional-integral
(PI) controllers (Lou and Christofides (2003), Lou
and Christofides (2006), Gallivan (2005)) and model-
based predictive controllers (Ni and Christofides
(2005a, b), Christofides and Armaou (2006)) have
been implemented in practice to control thin-film
growth surface roughness and other parameters of
interest. Figure 7 shows a general framework of pre-
dictive controllers. The difference between the real
and predicted output are compared; such informa-
tion is then fed into the optimizer to generate an op-
timal set point for the next step. Multiscale models

FIGURE 7. A Framework of Predictive Controllers with

Multiscale Models.
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can be employed in building the predictive model. In
nano applications, a multiscale model can be used to
characterize both macroscale and microscale behav-
ior of a process. Usually, manipulated variables are
applied to only the macroscale behavior of a process.
Formulating an objective function is a key task in de-
riving the optimal set point. Most objectives in the
multiscale control publications focused on the upper
scale process performance. See Fenner et al. (2005)
for a study of incorporating objectives from multi-
ple process stages in deriving an automatic-control
policy. The following gives another example.

The use of PI or predictive controllers has success-
fully improved process stability and product qual-
ity. However, in controlling a nanopositioner device,
Salapaka et al. (2002) noted that the conventional PI
controller does not meet the requirements for posi-
tioning. Instead, the authors considered an H-infinity
controller to incorporate both performance and ro-
bustness in the objective function and found the op-
timum based on the H-infinity norm. As the objective
is defined on multiple scales, the H-infinity norm is
calculated as the supremum of the objective func-
tion on all scales. The optimization method based
on H-infinity is a feasible way to solve multiscale
problems and has substantially improved positioning
speed and precision in the research.

Conclusion and Future Research

This article has reviewed applications of statisti-
cal techniques in nano technology. As the physical
and chemical properties of nanoscale materials dif-
fer fundamentally from the properties of individual
atoms and molecules or bulk matter, various chal-
lenges have occurred in designing, analyzing, and
manufacturing nanodevices. Therefore, both conven-
tional and new statistical techniques are expected to
play important roles in nanotechnology research.

This paper first investigates the experimental de-
sign issues of nanodevice fabrication processes. Di-
verse application examples include fractional facto-
rial designs, response surface designs, and robust pa-
rameter designs. For future nanotechnology research
to make efficient use of these methods, we feel that
the following issues are worthy of consideration:

(a) Choice of experimental-design methods. In some
applications, simply full factorial or fractional
factorial designs may be sufficient for model
building and process understanding. However,
as shown in several examples, nanofabrication
processes can be very sensitive to small changes

in controllable and noise factors. Moreover, the
process outcomes may not be continuous ran-
dom variables. In this case, irregular designs
or new experimental design methods might be
considered. Finally, special experimental con-
straints due to physical limitations may limit
the use of certain designs.

(b) Analysis of experimental data. Due to the
use of advanced measurement tools, spatial
data, high-frequency signals, and/or qualitative
measures are frequently observed in nano re-
search. Combined with the multistage nature
of the nanodevice–fabrication processes, statis-
tical analysis of such complicated and/or large
size data with many explanatory and noise fac-
tors provides many challenges. New algorithms,
such as those developed by Jeong et al. (2006),
Yuan and Kuo (2006), and Wang and Tsung
(2007), might be useful for dealing with these
new data types. Variable selection tools, such as
Yuan et al. (2007), could be effective for dealing
with large size factors constrained with exper-
imental design structures. However, more re-
search is needed in this field, especially for mul-
tistage, multiscale, and multilevel processes.

(c) Use of computer simulations. When the physi-
cal experimentation is costly and time consum-
ing, the use of computers for process and device
simulations is expected to become more preva-
lent in nano research. Sometimes, processes can
be very complicated, leading to lengthy com-
puter experiments. Thus, the design and anal-
ysis of computer experiments, as well as the
integration between computer and physical ex-
periments, are topics that deserve more future
research efforts.

(d) Interaction between statisticians and experts in
material science, physics, and other disciplines.
Nanotechnology is a multidisciplinary subject.
When statisticians are more involved in under-
standing the issues in nanoresearch, more effec-
tive procedures can be developed to deal with
challenging application problems. Statisticians
should be important players in novel scientific
discoveries.

Quality issues have been emphasized in early pro-
duction stages of nanodevices. The challenges con-
fronted when applying SPC and APC techniques in
nano applications are confounded with the new data
types discussed above. Moreover, when online sensor
information is available, it is interesting to see the of-
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fline robust parameter designs extended (e.g., Joseph
(2003)) to take advantage of the new information use-
ful for process adjustments. See Edgar et al. (2000)
and Del Castillo (2006) for a review in the topics of
automatic control and statistical process adjustment.

Research on reliability is also critical to nanode-
vices and their fabrication processes. The intrinsic
mechanism of failures for nanoproducts and the mod-
eling of their lifetimes are areas of future research
interest. Readers may refer to Jeng et al. (2007) for
a detailed review in nanoreliability studies and see
other papers in the same issue of the journal for
specific topics. A different, but related, direction of
new research is the “reliability” of measurement and
positioning systems in nanomanufacturing. Because
nanodevices are so small and the nanomanufacturing
process requires speedy data collection, how can one
know if the measurements are accurate and, more
important, if the nanosubsystems are placed in the
correct location within a very small-sized nanosys-
tem? See Xia et al. (2007) and Qian and Wu (2007)
for examples of new statistical methods developed
for integrating information with different accuracy
for statistical inference.

With the fast development of nanotechnology and
the introduction of mass production of nanodevices,
statistics is expected to play an increasingly impor-
tant role in both academic and industrial fields. This
review summarizes successful applications of statis-
tical methods in nanotechnology seen in the litera-
ture, along with a few interesting topics for future
research.
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